日立造船と日立ハイテクがごみ焼却発電施設でAI制御による長期運転に成功
[23/01/27]
提供元:PRTIMES
提供元:PRTIMES
施設の発電効率を向上させ、省エネルギー化やカーボンニュートラルに貢献
日立造船株式会社(代表取締役社長兼CEO三野 禎男/以下、日立造船)と株式会社日立ハイテクソリューションズ(代表取締役 取締役社長:三浦 英俊/以下、日立ハイテクソリューションズ)は、このたび、ごみ焼却施設において、AI(人工知能)によるボイラ過熱蒸気の過去の状態変動パターン学習により、リアルタイム*1で過熱蒸気の最適温度帯を予測し、制御動作を先行的に行うことで、蒸気温度の低下による発電ロスを最小限に抑えて90日間の長期運転*2に成功しました。
このAI制御システム(以下、本システム)は、株式会社日立製作所(以下、日立)が開発した強化学習技術を採用しており、実プラントでの試行錯誤的な繰り返し運転を必要とせず、過去のプロセス運転データのみを用いてプラント制御の学習モデルを構築することが可能です。
本実証の成功を受けて、日立ハイテクソリューションズは本システムをRL-Prophet(アールエルプロフェット)として製品化しました。今後、日立ハイテクソリューションズは、本システムをごみ焼却施設のさまざまなプロセスのほか、一般産業などへの展開も構想しており、システムの活用を通して省エネルギー化やカーボンニュートラルなどGX(グリーントランスフォーメーション)*3への貢献、また熟練者の減少や労働力不足といった社会課題にも応えていきます。
■AI制御システムの特長
本システムは、変動の大きいプラント制御に適した日立の強化学習技術を採用し、AIによって最適な制御則をリアルタイムで導き出すシステムです。DCS*4の一般的な制御技術であるPID*5制御のような後追い型の制御とは異なり、実プラントでの試行錯誤的な繰り返し運転は不要となります。本システムは、過去のプロセス運転データのみを用いてプラント制御の学習モデルを構築し、現時点での最適制御則を導き出しながら運転を行います。さらに、運転中にこれまで経験したことがない新たな挙動が発生した場合、”未学習”として判定した上で、運転に有効な挙動であれば、新たなAIモデルとして登録し、より優れた制御へと成長させることが可能となります。
[画像: https://prtimes.jp/i/49375/123/resize/d49375-123-a82ca78f36504e6196cd-0.png ]
*1 リアルタイム:最短1秒周期
*2 はだのクリーンセンター協力のもと、日立ハイテクソリューションズがシステムの開発と実装、日立造船がプラント制御への適用を行い、最終的に約3 か月(休炉を除く連続期間90 日)の長期運転を達成。
*3 GX(グリーントランスフォーメーション):温室効果ガスの排出につながる化石燃料などの使用を、再生可能エネルギーなどに転換することで、社会経済を変革させる取り組み。
*4 DCS: Distributed Control System プラント制御における一般的な制御システムの総称
*5 PID:Proportional-Integral-Differential Controller プラント制御における代表的な制御手法
■ AIプラント制御システムに関するウェブサイト
https://www.hitachi-hightech.com/jp/ja/products/ot-solution/control-system/ai-based/rl-prophet/index.html
日立造船株式会社(代表取締役社長兼CEO三野 禎男/以下、日立造船)と株式会社日立ハイテクソリューションズ(代表取締役 取締役社長:三浦 英俊/以下、日立ハイテクソリューションズ)は、このたび、ごみ焼却施設において、AI(人工知能)によるボイラ過熱蒸気の過去の状態変動パターン学習により、リアルタイム*1で過熱蒸気の最適温度帯を予測し、制御動作を先行的に行うことで、蒸気温度の低下による発電ロスを最小限に抑えて90日間の長期運転*2に成功しました。
このAI制御システム(以下、本システム)は、株式会社日立製作所(以下、日立)が開発した強化学習技術を採用しており、実プラントでの試行錯誤的な繰り返し運転を必要とせず、過去のプロセス運転データのみを用いてプラント制御の学習モデルを構築することが可能です。
本実証の成功を受けて、日立ハイテクソリューションズは本システムをRL-Prophet(アールエルプロフェット)として製品化しました。今後、日立ハイテクソリューションズは、本システムをごみ焼却施設のさまざまなプロセスのほか、一般産業などへの展開も構想しており、システムの活用を通して省エネルギー化やカーボンニュートラルなどGX(グリーントランスフォーメーション)*3への貢献、また熟練者の減少や労働力不足といった社会課題にも応えていきます。
■AI制御システムの特長
本システムは、変動の大きいプラント制御に適した日立の強化学習技術を採用し、AIによって最適な制御則をリアルタイムで導き出すシステムです。DCS*4の一般的な制御技術であるPID*5制御のような後追い型の制御とは異なり、実プラントでの試行錯誤的な繰り返し運転は不要となります。本システムは、過去のプロセス運転データのみを用いてプラント制御の学習モデルを構築し、現時点での最適制御則を導き出しながら運転を行います。さらに、運転中にこれまで経験したことがない新たな挙動が発生した場合、”未学習”として判定した上で、運転に有効な挙動であれば、新たなAIモデルとして登録し、より優れた制御へと成長させることが可能となります。
[画像: https://prtimes.jp/i/49375/123/resize/d49375-123-a82ca78f36504e6196cd-0.png ]
*1 リアルタイム:最短1秒周期
*2 はだのクリーンセンター協力のもと、日立ハイテクソリューションズがシステムの開発と実装、日立造船がプラント制御への適用を行い、最終的に約3 か月(休炉を除く連続期間90 日)の長期運転を達成。
*3 GX(グリーントランスフォーメーション):温室効果ガスの排出につながる化石燃料などの使用を、再生可能エネルギーなどに転換することで、社会経済を変革させる取り組み。
*4 DCS: Distributed Control System プラント制御における一般的な制御システムの総称
*5 PID:Proportional-Integral-Differential Controller プラント制御における代表的な制御手法
■ AIプラント制御システムに関するウェブサイト
https://www.hitachi-hightech.com/jp/ja/products/ot-solution/control-system/ai-based/rl-prophet/index.html