このエントリーをはてなブックマークに追加
SEOTOOLSロゴ画像

SEOTOOLSニュース 

SEOに関連するニュースリリースを公開しております。
最新のサービス情報を、御社のプロモーション・マーケティング戦略の新たな選択肢としてご活用下さい。

QuantumCoreがリザーバコンピューティングのコンパクト化に成功!業界初ラズパイ上での学習を実現した「EdgeQore」の提供を開始。手元のエッジデバイスでの活用が可能に。




リザーバコンピューティングを活用し、ディープラーニングの性能を超える多変量時系列処理ソリューションの開発に成功した株式会社QuantumCore(クアンタムコア、本社:東京都品川区、代表取締役:秋吉信吾、以下「当社」)が、精度を維持しながらリザーバコンピューティング(Reservoir Computing)のコンパクト化に成功し、学習から推論までのフル機能を「Raspberry Pi(以下「ラズパイ」)」内で全て完結させることで、業界で初めて完全なエッジ上での処理を実現しました。

QuantumCoreは、リザーバコンピューティングを誰でも使いやすくできるように、その成果をQoreという、少量データでリアルタイム解析が可能なReady to Useのソリューションとして提供してきましたが、今回のコンパクト化を通じて、今までよりも多くのユーザにベネフィットを提供可能となるばかりか、より大きなモデルにおいて活用可能となりました。さらには、学習・推論のパフォーマンスも改善されています。

■ EdgeQoreの新規リリース
マイクロコンピュータのラズパイ上で稼働するQore、その名も「EdgeQore」を新たに開発しました。このEdgeQoreを用いることで、オンプレミスで、ディープラーニングでも実現不可能な「少量データによるリアルタイム解析」を、誰でも実現することができるようになりました。
例えば、プライバシー保護が重視される用途や、インターネットに接続できない環境下での利用、高いレイテンシ(応答速度)を求められる用途など、これまで実現することができなかった幅広いケースに役立てることができます。
動作中の動画URL: https://youtu.be/LgQnNYSR8qI


[画像1: https://prtimes.jp/i/39630/4/resize/d39630-4-996001-0.jpg ]

■ リザーバコンピューティングとは
リザーバコンピューティングとは、レーザーの波長や波動く水面など、ダイナミクス(ノイズソース)を持つさまざまな物質を利用したコンピューティングのことで、これを活用したリカレントニューラルネットワーク(Recurrent Neural Network:RNN)が、最近新たな機械学習方式として注目されています。入力層、中間層(リザーバ層)、出力層(リードアウトニューロン層)の3層で構成される教師あり学習となります。
この方式では、ディープラーニングと違い、中間層を溜め池(Reservoir:リザーバ)にして計算を回すことで特徴抽出を行います。そのためディープラーニングで必要だった特徴抽出機能を学習により強化する必要がなく、学習時の中間層の重み更新が不要となる特徴を有しており、学習時の計算に必要なデータ量や計算力を著しく節約することができます。
なお、溜め池にはダイナミクス(ノイズソース)を持つものであれば様々なものが利用でき、現在はロボットやタコの身体をノイズソースとして計算する仕組みが探求されています。このように狭い意味では人工の神経回路を使って様々なノイズソースを用意し、そこから適宜情報を取り出して加算し計算する新しい人工の脳型コンピュータです。

■ QuautumCoreのテクノロジーについて
リザーバコンピューティングの特長は上述の通りですが、ディープラーニングに比べて精度を出しにくいという課題を有しておりました。その技術的な課題を当社独自の技術(特許進行中)で解消することに成功、ディープラーニング(Long short-term memory:LSTM)の性能を圧倒的に超える精度、コスト、スピードを実現する多変量時系列処理(Recurrent Neural Network:RNN)ソリューションQore(コア)シリーズの開発に成功しております。
Qoreの特長は「データ波形を効率的に捉えることで、少ないデータ量でLSTMを超える分類ができる」ことにあり、個体差、環境差、時間差等の影響が大きい領域(=ルールベースの推論モデルが通用しにくい領域)において、特に力を発揮します。
例えば異常検知等においては、推論モデルを構築するためにデータを採取してみたものの、正常データこそ大量に得られるが異常データをほとんど得ることができず、LSTMではそこから有効な異常検知の推論モデルを確立することが難しいといった問題が考えられます。そのようなケースにおいてもQoreを活用することで少ない異常データから有効な推論モデルをリアルタイムに導くことができます。しかも、従来ディープラーニングで問題であった複雑なパラメータチューニングもQoreでは不要です。

■ 株式会社QuautumCoreについて
当社は、QoreをベースとしたAPIならびにエッジ機能の開発・提供を行っております。
これまでディープラーニングでは活用しきれなかったデータや、実現できなかったニーズに対し、高精度・パラメータチューニング不要・リアルタイム学習・安価といった特長を備えたQoreを通じて、解決策を提示して参ります。

社 名:株式会社QuantumCore
代表者:代表取締役 秋吉 信吾
所在地:東京都品川区西五反田二丁目14番13号
設 立:2018年 4 月
URL:https://www.qcore.co.jp/
お問合せ:info@qcore.co.jp
[画像2: https://prtimes.jp/i/39630/4/resize/d39630-4-745626-1.png ]
PRTIMESリリースへ
SEOTOOLS News Letter

SEOに役立つ情報やニュース、SEOTOOLSの更新情報などを配信致します。


 powered by blaynmail
SEOTOOLSリファレンス
SEO対策
SEOの基礎知識
SEOを意識したサイト作り
サイトマップの作成
サイトの登録
カテゴリ(ディレクトリ)登録
カテゴリ登録(モバイル
検索エンジン登録
テキスト広告
検索連動型(リスティング)広告
プレスリリースを利用したSEO


TOPへ戻る