NVIDIA、日本と台湾で生成 AI 向け NIM マイクロサービスを開始
[24/08/27]
提供元:PRTIMES
提供元:PRTIMES
文化的理解力と言語能力を備えたソブリン AI アプリケーションの展開を加速
[画像: https://prtimes.jp/i/12662/481/resize/d12662-481-98d310d26d9747402229-0.jpg ]
世界中の国々が、自国のコンピューティング インフラ、データ、労働力およびビジネス ネットワークを使って人工知能を生み出し、ソブリン AI (https://blogs.nvidia.co.jp/2024/05/10/what-is-sovereign-ai/)を追求しており、AI システムをその地域の価値観、法律および興味関心に整合するものにしています。
このような取り組みを支援するために、NVIDIA は本日、開発者が高性能な生成 AI アプリケーションの構築と展開を簡単に行えるようにする、4 つの新しいNVIDIA NIM マイクロサービス(https://www.nvidia.com/ja-jp/ai/)を投入すると発表しました。
これらのマイクロサービスは、地域のニーズを具体的に想定して作られた、主要なコミュニティ モデルに対応しています。これらのモデルは、現地の言語と文化遺産についての正確な理解と改善された対応力によって、ユーザーとの対話を向上させています。
ABI Research (https://www.abiresearch.com/market-research/product/market-data/MD-AISG/)によれば、アジア太平洋地域だけでも、生成 AI ソフトウェアの売上は、今年の 50 億ドルから増加し、2030 年までには 480 億ドルに達するものと予想されています。
日本語データを基にしてトレーニングされた Llama-3-Swallow-70B と標準中国語 (マンダリン) を基にしてトレーニングされた Llama-3-Taiwan-70B は、現地の法律、規制および他の習慣を深く理解している、地域の言語モデルです。
「Rakuten AI 7B」 は「Mistral-7B」 を基に、英語と日本語のデータセットにより学習を行った一連のモデルです。同大規模言語モデルのチャットモデルとインストラクションチューニング済みモデルが、それぞれのNIMマイクロサービスとして利用可能になっています。なお、「Rakuten AI 7B」の基盤モデルとインストラクションチューニング済みモデルは、「LM Evaluation Harness」の基準で2024年1月〜3月に楽天内で評価を実施し、オープンな日本語大規模言語モデルにおいてトップの平均スコアを獲得しました (https://corp.rakuten.co.jp/news/press/2024/0321_01.html)。
地域の言語で大規模言語モデル (https://www.nvidia.com/ja-jp/glossary/large-language-models/ )(LLM) のトレーニングを行うことによって、文化的および言語的に微妙な違いがよりよく理解され、それらが反映されるため、より正確でニュアンスのあるコミュニケーションが可能になり、アウトプットの効果が高まります。
これらのモデルは、Llama 3 のような基本的な LLM と比較した場合、日本語と中国語の言語理解、地域の法的課題への対応、質疑応答、ならびに言語翻訳や要約において優れた性能を発揮します。
シンガポール(https://blogs.nvidia.com/blog/singtel-sovereign-ai/)、アラブ首長国連邦 (https://blogs.nvidia.com/blog/world-governments-summit/)、韓国、スウェーデンから、フランス、イタリア、インドにいたる、世界中の国々が、ソブリン AI への投資を行っています。
新しい NIM マイクロサービスにより、企業、政府機関および大学では、それぞれの環境でネイティブの LLM をホストできるようになり、開発者は高度なコパイロット、チャットボットおよび AI アシスタントを構築することができます。
ソブリン AI NIM マイクロサービスを使ったアプリケーション開発
開発者は、パフォーマンスを向上させながら、NIM マイクロサービスとしてパッケージ化されたソブリン AI モデルを本番環境に展開できます。
NVIDIA AI Enterprise (https://www.nvidia.com/ja-jp/data-center/products/ai-enterprise/)で利用可能なマイクロサービスは、NVIDIA TensorRT-LLM(https://docs.nvidia.com/tensorrt-llm/index.html) オープン ソース ライブラリによって推論に最適化されています。
新しい Llama-3-Swallow-70B と Llama-3-Taiwan-70B NIM のベース モデルとして使用された Llama 3 70B 向けの NIM マイクロサービスは、最大 5 倍のスループットを提供します。これにより、本番環境でモデルを実行する際の総費用が削減され、レイテンシの低下によってユーザー体験が向上します。
新しい NIM マイクロサービスは、本日よりホステッド アプリケーション プログラミング インターフェース (API) として利用可能です。
NVIDIA NIM の利用により、より高速で正確な生成 AI の成果を実現
NIM マイクロサービスは、展開の加速と全体的なパフォーマンの向上を実現し、さらにヘルスケア、金融、製造、教育および法務を含む、世界の多様な業界の組織に必要なセキュリティを提供します。
東京工業大学は、日本語データを使って、Llama-3-Swallow 70B をファインチューニングしました。
東京工業大学 学術国際情報センターの横田 理央 教授は、次のように話しています。「LLMは、誰にでも同じ利益をもたらす機械的な道具ではありません。むしろ、人間の文化や創造性と相互作用する知的ツールなのです。その影響は相互的なものであり、モデルは我々が訓練するデータの影響を受けるだけでなく、我々の文化や我々が生成するデータもLLMの影響を受けることになります。従って、我々の文化的規範を遵守するソブリン AIモデルを開発することは最重要課題となります。NVIDIA NIMマイクロサービスとしてLlama-3-Swallowが利用可能になることで、開発者は様々な業界の日本のアプリケーションに簡単にアクセスしてモデルを展開できるようになります。」
たとえば、日本の AI 企業である Preferred Networks は、このモデルを使って日本語医療データの独自コーパスを用いてトレーニングされたヘルスケアに特化したモデル「Llama3-Preferred-MedSwallow-70B」を開発しています。このモデルは、日本の医師国家試験で高いスコアを達成しています。
台湾有数の病院である Chang Gung Memorial Hospital (CGMH) は、カスタムメイドの AI 推論サービス (AIIS) を構築し、すべての LLM アプリケーションを病院システム内で集約しています。Llama 3-Taiwan 70B を利用して、患者が理解しやすく、よりニュアンスの伝わる医療言語を使い、最前線の医療スタッフの効率性を高めています。
CGMH Linko の Center for Artificial Intelligence in Medicine でディレクターを務める、Changfu Ku 医師は、次のように話しています。「現地語の LLM で構築された AI アプリケーションは、文脈にあった案内を即時に提供することで、ワークフローを合理化するだけでなく、スタッフの育成を支援し、患者ケアの品質を高める継続的な学習ツールとなっています。NVIDIA NIM はこれらアプリケーションの開発を簡素化し、地域の言語でトレーニングされたモデルを最小限の専門知識で簡単に利用および展開できるようにしています」
台湾に本社を置く電子デバイス メーカーの Pegatron は、社内外で利用されるアプリケーションに、Llama 3-Taiwan 70B NIM マイクロサービスを採用する予定です。同社は、このマイクロサービスを自社の PEGAAi Agentic AI Systemに統合することでプロセスを自動化し、製造や運用の効率を大幅に高めます。
Llama-3-Taiwan 70B NIM は、世界的な石油化学製品メーカーの Chang Chun Group、世界トップクラスのプリント基板企業である Unimicron、技術系のメディア企業である TechOrange、オンライン契約サービスを提供している LegalSign.ai および生成 AI のスタートアップである APMIC でも利用されています。これらの企業は、オープン モデルでも協力しています。
NVIDIA AI Foundry で、カスタムのエンタープライズ モデルを作成
地域の AI モデルが文化的な機微のわかる、ローカライズされた対応を実現している一方で、エンタープライズは、自社のビジネス プロセスと専門知識に合わせるために、それらモデルをファインチューニングする必要があります。
NVIDIA AI Foundry(https://www.nvidia.com/ja-jp/ai/foundry/) は、よく使われている基盤モデル、ファインチューニング用の NVIDIA NeMo(https://www.nvidia.com/ja-jp/ai-data-science/products/nemo/)、および NVIDIA DGX Cloud (https://www.nvidia.com/ja-jp/data-center/dgx-cloud/)の専用キャパシティを備えたプラットフォームおよびサービスです。これにより、開発者は NIM マイクロサービスとしてパッケージ化された、カスタマイズ可能な基盤モデルを作成するためのフル スタック ソリューションを利用できます。
さらに、NVIDIA AI Foundry を使用している開発者は、セキュリティ、安定性、ならびに本番環境の展開でのサポートを実現する、NVIDIA AI Enterprise (https://www.nvidia.com/ja-jp/data-center/products/ai-enterprise/)ソフトウェア プラットフォームを利用することができます。
NVIDIA AI Foundry は、開発者に AI アプリケーションを構築し、独自のカスタム地域語 NIM マイクロサービスを迅速かつ簡単に展開するためのツールを提供します。その結果、開発者は文化的および言語的に適切な成果をユーザーに届けることができます。
NVIDIA について
1993 年の創業以来、NVIDIA (https://www.nvidia.com/ja-jp/)(NASDAQ: NVDA) は、アクセラレーテッド コンピューティングのパイオニアとして活動してきました。同社が 1999 年に発明した GPU は、PC ゲーム市場の成長に拍車をかけ、コンピューター グラフィックスを再定義し、現代の AI の時代に火をつけ、メタバースの創造を後押ししています。NVIDIA は現在、データセンター規模の製品を提供するフルスタック コンピューティング企業であり、産業のあり方を大きく変えています。詳細は、こちらのリンクから:https://nvidianews.nvidia.com/
[画像: https://prtimes.jp/i/12662/481/resize/d12662-481-98d310d26d9747402229-0.jpg ]
世界中の国々が、自国のコンピューティング インフラ、データ、労働力およびビジネス ネットワークを使って人工知能を生み出し、ソブリン AI (https://blogs.nvidia.co.jp/2024/05/10/what-is-sovereign-ai/)を追求しており、AI システムをその地域の価値観、法律および興味関心に整合するものにしています。
このような取り組みを支援するために、NVIDIA は本日、開発者が高性能な生成 AI アプリケーションの構築と展開を簡単に行えるようにする、4 つの新しいNVIDIA NIM マイクロサービス(https://www.nvidia.com/ja-jp/ai/)を投入すると発表しました。
これらのマイクロサービスは、地域のニーズを具体的に想定して作られた、主要なコミュニティ モデルに対応しています。これらのモデルは、現地の言語と文化遺産についての正確な理解と改善された対応力によって、ユーザーとの対話を向上させています。
ABI Research (https://www.abiresearch.com/market-research/product/market-data/MD-AISG/)によれば、アジア太平洋地域だけでも、生成 AI ソフトウェアの売上は、今年の 50 億ドルから増加し、2030 年までには 480 億ドルに達するものと予想されています。
日本語データを基にしてトレーニングされた Llama-3-Swallow-70B と標準中国語 (マンダリン) を基にしてトレーニングされた Llama-3-Taiwan-70B は、現地の法律、規制および他の習慣を深く理解している、地域の言語モデルです。
「Rakuten AI 7B」 は「Mistral-7B」 を基に、英語と日本語のデータセットにより学習を行った一連のモデルです。同大規模言語モデルのチャットモデルとインストラクションチューニング済みモデルが、それぞれのNIMマイクロサービスとして利用可能になっています。なお、「Rakuten AI 7B」の基盤モデルとインストラクションチューニング済みモデルは、「LM Evaluation Harness」の基準で2024年1月〜3月に楽天内で評価を実施し、オープンな日本語大規模言語モデルにおいてトップの平均スコアを獲得しました (https://corp.rakuten.co.jp/news/press/2024/0321_01.html)。
地域の言語で大規模言語モデル (https://www.nvidia.com/ja-jp/glossary/large-language-models/ )(LLM) のトレーニングを行うことによって、文化的および言語的に微妙な違いがよりよく理解され、それらが反映されるため、より正確でニュアンスのあるコミュニケーションが可能になり、アウトプットの効果が高まります。
これらのモデルは、Llama 3 のような基本的な LLM と比較した場合、日本語と中国語の言語理解、地域の法的課題への対応、質疑応答、ならびに言語翻訳や要約において優れた性能を発揮します。
シンガポール(https://blogs.nvidia.com/blog/singtel-sovereign-ai/)、アラブ首長国連邦 (https://blogs.nvidia.com/blog/world-governments-summit/)、韓国、スウェーデンから、フランス、イタリア、インドにいたる、世界中の国々が、ソブリン AI への投資を行っています。
新しい NIM マイクロサービスにより、企業、政府機関および大学では、それぞれの環境でネイティブの LLM をホストできるようになり、開発者は高度なコパイロット、チャットボットおよび AI アシスタントを構築することができます。
ソブリン AI NIM マイクロサービスを使ったアプリケーション開発
開発者は、パフォーマンスを向上させながら、NIM マイクロサービスとしてパッケージ化されたソブリン AI モデルを本番環境に展開できます。
NVIDIA AI Enterprise (https://www.nvidia.com/ja-jp/data-center/products/ai-enterprise/)で利用可能なマイクロサービスは、NVIDIA TensorRT-LLM(https://docs.nvidia.com/tensorrt-llm/index.html) オープン ソース ライブラリによって推論に最適化されています。
新しい Llama-3-Swallow-70B と Llama-3-Taiwan-70B NIM のベース モデルとして使用された Llama 3 70B 向けの NIM マイクロサービスは、最大 5 倍のスループットを提供します。これにより、本番環境でモデルを実行する際の総費用が削減され、レイテンシの低下によってユーザー体験が向上します。
新しい NIM マイクロサービスは、本日よりホステッド アプリケーション プログラミング インターフェース (API) として利用可能です。
NVIDIA NIM の利用により、より高速で正確な生成 AI の成果を実現
NIM マイクロサービスは、展開の加速と全体的なパフォーマンの向上を実現し、さらにヘルスケア、金融、製造、教育および法務を含む、世界の多様な業界の組織に必要なセキュリティを提供します。
東京工業大学は、日本語データを使って、Llama-3-Swallow 70B をファインチューニングしました。
東京工業大学 学術国際情報センターの横田 理央 教授は、次のように話しています。「LLMは、誰にでも同じ利益をもたらす機械的な道具ではありません。むしろ、人間の文化や創造性と相互作用する知的ツールなのです。その影響は相互的なものであり、モデルは我々が訓練するデータの影響を受けるだけでなく、我々の文化や我々が生成するデータもLLMの影響を受けることになります。従って、我々の文化的規範を遵守するソブリン AIモデルを開発することは最重要課題となります。NVIDIA NIMマイクロサービスとしてLlama-3-Swallowが利用可能になることで、開発者は様々な業界の日本のアプリケーションに簡単にアクセスしてモデルを展開できるようになります。」
たとえば、日本の AI 企業である Preferred Networks は、このモデルを使って日本語医療データの独自コーパスを用いてトレーニングされたヘルスケアに特化したモデル「Llama3-Preferred-MedSwallow-70B」を開発しています。このモデルは、日本の医師国家試験で高いスコアを達成しています。
台湾有数の病院である Chang Gung Memorial Hospital (CGMH) は、カスタムメイドの AI 推論サービス (AIIS) を構築し、すべての LLM アプリケーションを病院システム内で集約しています。Llama 3-Taiwan 70B を利用して、患者が理解しやすく、よりニュアンスの伝わる医療言語を使い、最前線の医療スタッフの効率性を高めています。
CGMH Linko の Center for Artificial Intelligence in Medicine でディレクターを務める、Changfu Ku 医師は、次のように話しています。「現地語の LLM で構築された AI アプリケーションは、文脈にあった案内を即時に提供することで、ワークフローを合理化するだけでなく、スタッフの育成を支援し、患者ケアの品質を高める継続的な学習ツールとなっています。NVIDIA NIM はこれらアプリケーションの開発を簡素化し、地域の言語でトレーニングされたモデルを最小限の専門知識で簡単に利用および展開できるようにしています」
台湾に本社を置く電子デバイス メーカーの Pegatron は、社内外で利用されるアプリケーションに、Llama 3-Taiwan 70B NIM マイクロサービスを採用する予定です。同社は、このマイクロサービスを自社の PEGAAi Agentic AI Systemに統合することでプロセスを自動化し、製造や運用の効率を大幅に高めます。
Llama-3-Taiwan 70B NIM は、世界的な石油化学製品メーカーの Chang Chun Group、世界トップクラスのプリント基板企業である Unimicron、技術系のメディア企業である TechOrange、オンライン契約サービスを提供している LegalSign.ai および生成 AI のスタートアップである APMIC でも利用されています。これらの企業は、オープン モデルでも協力しています。
NVIDIA AI Foundry で、カスタムのエンタープライズ モデルを作成
地域の AI モデルが文化的な機微のわかる、ローカライズされた対応を実現している一方で、エンタープライズは、自社のビジネス プロセスと専門知識に合わせるために、それらモデルをファインチューニングする必要があります。
NVIDIA AI Foundry(https://www.nvidia.com/ja-jp/ai/foundry/) は、よく使われている基盤モデル、ファインチューニング用の NVIDIA NeMo(https://www.nvidia.com/ja-jp/ai-data-science/products/nemo/)、および NVIDIA DGX Cloud (https://www.nvidia.com/ja-jp/data-center/dgx-cloud/)の専用キャパシティを備えたプラットフォームおよびサービスです。これにより、開発者は NIM マイクロサービスとしてパッケージ化された、カスタマイズ可能な基盤モデルを作成するためのフル スタック ソリューションを利用できます。
さらに、NVIDIA AI Foundry を使用している開発者は、セキュリティ、安定性、ならびに本番環境の展開でのサポートを実現する、NVIDIA AI Enterprise (https://www.nvidia.com/ja-jp/data-center/products/ai-enterprise/)ソフトウェア プラットフォームを利用することができます。
NVIDIA AI Foundry は、開発者に AI アプリケーションを構築し、独自のカスタム地域語 NIM マイクロサービスを迅速かつ簡単に展開するためのツールを提供します。その結果、開発者は文化的および言語的に適切な成果をユーザーに届けることができます。
NVIDIA について
1993 年の創業以来、NVIDIA (https://www.nvidia.com/ja-jp/)(NASDAQ: NVDA) は、アクセラレーテッド コンピューティングのパイオニアとして活動してきました。同社が 1999 年に発明した GPU は、PC ゲーム市場の成長に拍車をかけ、コンピューター グラフィックスを再定義し、現代の AI の時代に火をつけ、メタバースの創造を後押ししています。NVIDIA は現在、データセンター規模の製品を提供するフルスタック コンピューティング企業であり、産業のあり方を大きく変えています。詳細は、こちらのリンクから:https://nvidianews.nvidia.com/