富士通研究所、AI判定を意図的にだます偽装攻撃を検知する系列データ向け耐性強化技術を開発
[20/10/29]
TOKYO, Oct 29, 2020 - (JCN Newswire) - 株式会社富士通研究所(注1)(以下、富士通研究所)は、複数の要素から成る系列データに対するAI活用において、偽造攻撃データを用いてAIモデルをだまし、意図的に判定を誤らせる攻撃への耐性を強化する技術を開発しました。
近年、様々な領域におけるAI活用が進む中、AIの誤判定を意図的に引き起こす攻撃のリスクが懸念されています。従来の攻撃対策技術は、画像・音声などのメディアデータ向けに適した技術が多く、通信ログやサービス利用履歴などの系列データへの適用には、模擬偽装攻撃データを用意する難しさや精度低下といった課題があり不十分でした。
これらの課題を解決するため、このたび系列データに適用可能なAIモデルの耐性強化技術を開発しました。本技術は、偽装攻撃を模擬したデータを大量に自動生成し、元の学習データセットと結合させることで判定精度を維持したまま偽装攻撃への耐性を向上させることが可能です。
本技術を当社が開発したサイバー攻撃への対処要否を判断するAIモデル(注2)へ適用した結果、独自の偽装攻撃テストデータにおいて約88%誤判定を防げることを確認しました。
本技術が対象としている系列データ分析AIは様々な分野で利用されており、本技術を活用することでメディアデータ向けに留まらない広範なAI活用システムの安全性向上に貢献します。
本技術の詳細は、10月26日(月曜日)から10月29日(木曜日)まで開催される「コンピュータセキュリティシンポジウム2020 (CSS 2020)」にて発表します。
本リリースの詳細は下記をご参照ください。
https://pr.fujitsu.com/jp/news/2020/10/29.html
概要: 富士通株式会社
詳細は http://jp.fujitsu.com/ をご覧ください。
Copyright 2020 JCN Newswire. All rights reserved. www.jcnnewswire.com
近年、様々な領域におけるAI活用が進む中、AIの誤判定を意図的に引き起こす攻撃のリスクが懸念されています。従来の攻撃対策技術は、画像・音声などのメディアデータ向けに適した技術が多く、通信ログやサービス利用履歴などの系列データへの適用には、模擬偽装攻撃データを用意する難しさや精度低下といった課題があり不十分でした。
これらの課題を解決するため、このたび系列データに適用可能なAIモデルの耐性強化技術を開発しました。本技術は、偽装攻撃を模擬したデータを大量に自動生成し、元の学習データセットと結合させることで判定精度を維持したまま偽装攻撃への耐性を向上させることが可能です。
本技術を当社が開発したサイバー攻撃への対処要否を判断するAIモデル(注2)へ適用した結果、独自の偽装攻撃テストデータにおいて約88%誤判定を防げることを確認しました。
本技術が対象としている系列データ分析AIは様々な分野で利用されており、本技術を活用することでメディアデータ向けに留まらない広範なAI活用システムの安全性向上に貢献します。
本技術の詳細は、10月26日(月曜日)から10月29日(木曜日)まで開催される「コンピュータセキュリティシンポジウム2020 (CSS 2020)」にて発表します。
本リリースの詳細は下記をご参照ください。
https://pr.fujitsu.com/jp/news/2020/10/29.html
概要: 富士通株式会社
詳細は http://jp.fujitsu.com/ をご覧ください。
Copyright 2020 JCN Newswire. All rights reserved. www.jcnnewswire.com