生体分子モーターで動く人工筋肉、光で自在に作製可能
[21/04/20]
提供元:共同通信PRワイヤー
提供元:共同通信PRワイヤー
― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―
令和3年4月20日
国立大学法人東海国立大学機構 岐阜大学
生体分子モーターで動く人工筋肉、光で自在に作製可能
― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―
【発表者】
国立大学法人 北陸先端科学技術大学院大学
国立大学法人東海国立大学機構 岐阜大学
国立大学法人 大阪大学
【ポイント】
■光照射した場所に自在な形状に作製できる人工筋肉の開発に成功
■遺伝子工学的に改変した生体分子モーターからなる光応答性の分子システムを開発
■ミリメートルスケールの微小機械の駆動を実証
■ マイクロロボットやソフトロボットの3Dプリントの実現に期待
【概要】
北陸先端科学技術大学院大学・先端科学技術研究科 生命機能工学領域の平塚祐一准教授、杜釗 大学院生(博士前期課程)は、岐阜大学・工学部の新田高洋准教授、大阪大学・大学院工学研究科 機械工学専攻の森島圭祐教授、王穎哲 大学院生(博士後期課程/特任研究員)との共同研究で、筋肉のような収縮性のファイバー(以下、人工筋肉)を、光照射した場所に自在に形成させることに成功した。この人工筋肉は、生物の動きに関わるタンパク質である生体分子モーターを遺伝子工学的に改変することにより実現した。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できることを実証した。この成果は将来、これまで困難であったマイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待される。
本研究成果は、2021年4月19日(英国時間)に科学雑誌「Nature Materials」誌のオンライン版で公開された。なお、本研究は新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)、日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」の支援を受けて行われた。
【研究背景と内容】
生物のエンジン「筋肉」は、モータータンパク質[*1]と呼ばれる生体分子モーターから構築されており、数百マイクロメートル(マイクロは100万分の1)から数十メートルまでスケーラビリティにとんだアクチュエータである。生物のエネルギー源(アデノシン三リン酸 (ATP))を用いて高い効率で力学的仕事を行うという、従来のアクチュエータと比べ質的に異なる特性を持ち、これまでには無い産業分野での応用が期待されている。しかし、筋肉自体または筋肉細胞をアクチュエータとして利用する試みは基礎研究レベルでは報告されているが、筋肉細胞の安定性・保存性の問題やアクチュエータとして組み込む技術が未発達のため、実用化には至っていない。また、筋肉組織の構成分子はほぼ同定されているが、それら構成分子から筋肉を再構築する技術は知られていなかった。
本研究では、生体内の収縮性ファイバーの形成過程に着想を得て、人工筋肉を自在に形成させる分子システムを開発した。モータータンパク質の一種であるキネシンを遺伝子工学的に改変し、フィラメント状にすることにより、レールタンパク質である微小管[*2]と混ぜるだけで、モータータンパク質の動的な機能により自己組織的に人工筋肉を形成させることができた。さらに、光照射によりモーター分子のフィラメント化を開始させ、照射した部位のみに人工筋肉を形成させることを可能とした(図1)。この人工筋肉を大きさ数ミリメートルの機械構造内に形成させることにより微小機械を駆動させることに成功した(図2)。
筋肉のような柔軟で低エネルギー・低環境負荷なアクチュエータの産業応用は期待されているが、上述のように実用化には至っていない。本研究では、生体の運動素子であるモータータンパク質分子を数ミリメートル以上の組織に構築することにより、生物の筋肉に似た機能・性質を持つ人工筋肉の製造を可能とした。特に光照射により人工筋肉の形成を開始可能なことから、たとえば光造形型の3Dプリンタに組み込めば人工筋肉の光造形などが可能になることが将来期待でき、生体材料で駆動するマイクロロボットやソフトロボットの3Dプリント技術の基盤技術となる可能性が高い。
【今後の展開】
本研究で開発された人工筋肉は、現時点では形成・収縮が同時に起こり、かつ収縮は一回のみで用途も限定される。今後、制御用の分子システムを開発することにより、可逆または振動可能な人工筋肉を開発しマイクロロボットやソフトロボットへの実装を目指す。
【画像:https://kyodonewsprwire.jp/img/202104163775-O7-W4mHpd2d】
図1.光照射による人工筋肉形成のコンセプト図 モータータンパク質の一種キネシンを遺伝子工学的に改変し、光照射によりキネシンがフィラメント状になるように設計(K456m13とCaMLMM)。キネシンフィラメントは自身の運動能により微小管を引っ張り、自己組織的に筋肉に似た収縮性の繊維を形成する。
【画像:https://kyodonewsprwire.jp/img/202104163775-O9-H9bcq152】
図2. 人工筋肉の応用例 大きさ数ミリメートルのシリコンゴム製の微小構造の周囲に、光照射により人工筋肉を形成させ、その構造を駆動させた。
右上)マイクログリッパ:光照射後に人工筋肉(オレンジ色)が形成し、20秒後にグリッパが閉じる。
右下)昆虫型デバイス:人工筋肉により左右に動く。
左上)ロボットアーム型デバイス。
左中)微小歯車の組み立て。
左下)細胞サイズの微小ビーズの集積。
【研究資金】
・新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)
・日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」(JP24104004)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP18H01407)
【論文情報】
雑誌名: Nature Materials
題 名:“A printable active network actuator built from an engineered biomolecular motor”
著者名:Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima and Yuichi Hiratsuka*
掲載日:2021年4月19日(英国時間)にオンライン版に掲載
DOI :10.1038/s41563-021-00969-6
【用語説明】
*1)モータータンパク質(motor protein)
生体の動きに関与するタンパク質の総称。大きさ数ナノメートル〜数十ナノメートルの分子で、代表的なものとして筋収縮に働くミオシン、細胞内の物質輸送に働くキネシン、鞭毛運動等に働くダイニンなどが挙げられる。これらは繊維状のタンパク質であるアクチンまたは微小管の上を生体のエネルギーであるATP(アデノシン三リン酸)の加水分解エネルギーを利用して一方向に動く。
*2)微小管(microtubule)
細胞骨格を構成する繊維状タンパク質のひとつ。大きさ数ナノメートルのチューブリンが筒状に重合することにより直径25ナノメートルの管状の繊維を形成する。キネシンやダイニンなどモータータンパク質が動くレールとして働く。
令和3年4月20日
国立大学法人東海国立大学機構 岐阜大学
生体分子モーターで動く人工筋肉、光で自在に作製可能
― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―
【発表者】
国立大学法人 北陸先端科学技術大学院大学
国立大学法人東海国立大学機構 岐阜大学
国立大学法人 大阪大学
【ポイント】
■光照射した場所に自在な形状に作製できる人工筋肉の開発に成功
■遺伝子工学的に改変した生体分子モーターからなる光応答性の分子システムを開発
■ミリメートルスケールの微小機械の駆動を実証
■ マイクロロボットやソフトロボットの3Dプリントの実現に期待
【概要】
北陸先端科学技術大学院大学・先端科学技術研究科 生命機能工学領域の平塚祐一准教授、杜釗 大学院生(博士前期課程)は、岐阜大学・工学部の新田高洋准教授、大阪大学・大学院工学研究科 機械工学専攻の森島圭祐教授、王穎哲 大学院生(博士後期課程/特任研究員)との共同研究で、筋肉のような収縮性のファイバー(以下、人工筋肉)を、光照射した場所に自在に形成させることに成功した。この人工筋肉は、生物の動きに関わるタンパク質である生体分子モーターを遺伝子工学的に改変することにより実現した。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できることを実証した。この成果は将来、これまで困難であったマイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待される。
本研究成果は、2021年4月19日(英国時間)に科学雑誌「Nature Materials」誌のオンライン版で公開された。なお、本研究は新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)、日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」の支援を受けて行われた。
【研究背景と内容】
生物のエンジン「筋肉」は、モータータンパク質[*1]と呼ばれる生体分子モーターから構築されており、数百マイクロメートル(マイクロは100万分の1)から数十メートルまでスケーラビリティにとんだアクチュエータである。生物のエネルギー源(アデノシン三リン酸 (ATP))を用いて高い効率で力学的仕事を行うという、従来のアクチュエータと比べ質的に異なる特性を持ち、これまでには無い産業分野での応用が期待されている。しかし、筋肉自体または筋肉細胞をアクチュエータとして利用する試みは基礎研究レベルでは報告されているが、筋肉細胞の安定性・保存性の問題やアクチュエータとして組み込む技術が未発達のため、実用化には至っていない。また、筋肉組織の構成分子はほぼ同定されているが、それら構成分子から筋肉を再構築する技術は知られていなかった。
本研究では、生体内の収縮性ファイバーの形成過程に着想を得て、人工筋肉を自在に形成させる分子システムを開発した。モータータンパク質の一種であるキネシンを遺伝子工学的に改変し、フィラメント状にすることにより、レールタンパク質である微小管[*2]と混ぜるだけで、モータータンパク質の動的な機能により自己組織的に人工筋肉を形成させることができた。さらに、光照射によりモーター分子のフィラメント化を開始させ、照射した部位のみに人工筋肉を形成させることを可能とした(図1)。この人工筋肉を大きさ数ミリメートルの機械構造内に形成させることにより微小機械を駆動させることに成功した(図2)。
筋肉のような柔軟で低エネルギー・低環境負荷なアクチュエータの産業応用は期待されているが、上述のように実用化には至っていない。本研究では、生体の運動素子であるモータータンパク質分子を数ミリメートル以上の組織に構築することにより、生物の筋肉に似た機能・性質を持つ人工筋肉の製造を可能とした。特に光照射により人工筋肉の形成を開始可能なことから、たとえば光造形型の3Dプリンタに組み込めば人工筋肉の光造形などが可能になることが将来期待でき、生体材料で駆動するマイクロロボットやソフトロボットの3Dプリント技術の基盤技術となる可能性が高い。
【今後の展開】
本研究で開発された人工筋肉は、現時点では形成・収縮が同時に起こり、かつ収縮は一回のみで用途も限定される。今後、制御用の分子システムを開発することにより、可逆または振動可能な人工筋肉を開発しマイクロロボットやソフトロボットへの実装を目指す。
【画像:https://kyodonewsprwire.jp/img/202104163775-O7-W4mHpd2d】
図1.光照射による人工筋肉形成のコンセプト図 モータータンパク質の一種キネシンを遺伝子工学的に改変し、光照射によりキネシンがフィラメント状になるように設計(K456m13とCaMLMM)。キネシンフィラメントは自身の運動能により微小管を引っ張り、自己組織的に筋肉に似た収縮性の繊維を形成する。
【画像:https://kyodonewsprwire.jp/img/202104163775-O9-H9bcq152】
図2. 人工筋肉の応用例 大きさ数ミリメートルのシリコンゴム製の微小構造の周囲に、光照射により人工筋肉を形成させ、その構造を駆動させた。
右上)マイクログリッパ:光照射後に人工筋肉(オレンジ色)が形成し、20秒後にグリッパが閉じる。
右下)昆虫型デバイス:人工筋肉により左右に動く。
左上)ロボットアーム型デバイス。
左中)微小歯車の組み立て。
左下)細胞サイズの微小ビーズの集積。
【研究資金】
・新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)
・日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」(JP24104004)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP18H01407)
【論文情報】
雑誌名: Nature Materials
題 名:“A printable active network actuator built from an engineered biomolecular motor”
著者名:Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima and Yuichi Hiratsuka*
掲載日:2021年4月19日(英国時間)にオンライン版に掲載
DOI :10.1038/s41563-021-00969-6
【用語説明】
*1)モータータンパク質(motor protein)
生体の動きに関与するタンパク質の総称。大きさ数ナノメートル〜数十ナノメートルの分子で、代表的なものとして筋収縮に働くミオシン、細胞内の物質輸送に働くキネシン、鞭毛運動等に働くダイニンなどが挙げられる。これらは繊維状のタンパク質であるアクチンまたは微小管の上を生体のエネルギーであるATP(アデノシン三リン酸)の加水分解エネルギーを利用して一方向に動く。
*2)微小管(microtubule)
細胞骨格を構成する繊維状タンパク質のひとつ。大きさ数ナノメートルのチューブリンが筒状に重合することにより直径25ナノメートルの管状の繊維を形成する。キネシンやダイニンなどモータータンパク質が動くレールとして働く。