このエントリーをはてなブックマークに追加
SEOTOOLSロゴ画像

SEOTOOLSニュース 

SEOに関連するニュースリリースを公開しております。
最新のサービス情報を、御社のプロモーション・マーケティング戦略の新たな選択肢としてご活用下さい。

Revealing crystal structures robotically

TSUKUBA, Japan, Dec 2, 2022 - (JCN Newswire) - Researchers at the National Institute for Materials Science (NIMS) in Japan have automated a complex and labour-intensive process for analysing the results of X-ray diffraction studies, which are used to determine the structure of crystalline materials. The team described the development and application of their technique in the journal Science and Technology of Advanced Materials: Methods.

X-rays fired at a crystal interact with the geometric arrangement of its particles and are diffracted in many directions in a complex pattern of rays that depends on the crystal's precise structure. Experts analyse the pattern and intensity of the diffracted X-rays to determine the crystal's internal arrangement. This is a powerful and widely used process for revealing the three-dimensional atomic structure of new materials.

A well-established mathematical procedure, called Rietveld analysis, is used for interpreting X-ray diffraction data, but it is time-consuming and requires manual trial-and-error refinement of the results.

"To reduce human costs and resources, we have developed a robotic process automation (RPA) system that we apply to an existing Rietveld analysis program called RIETAN-FP," says Ryo Tamura of the NIMS team. "By using our new procedure, with the help of machine learning, we have succeeded in performing Rietveld analysis automatically," Tamura adds.

The automation can be run on a personal computer and can reduce human error as well as greatly speed up the data analysis.

Tamura explains that the field of materials science already relies on numerous graphical user interface (GUI) applications to calculate a material's properties, control experimental equipment, or analyse material data. He says that combining this new RPA and machine learning ability with these applications achieves a "closed loop" to automatically design and analyse materials with minimal human intervention.

The researchers verified the accuracy of their procedure by analysing samples of powdered compounds whose crystal structures are already known. The ability to determine the structures from powdered samples is one of the great strengths of Rietveld analysis. It avoids the need to grow large single crystals, which can be extremely difficult to obtain for some materials.

"Automating Rietveld analysis brings a very powerful new tool into the entire field of materials science," Tamura concludes.

The researchers are now working to further refine their procedure to make it suitable for more complex crystal structures. Another aim is to explore the use of their machine learning RPA strategy for more general applications in materials science. The possibilities include numerous simulation methods used for calculating material properties, and also applications for controlling experimental equipment. The success achieved thus far with X-ray diffraction could just be the start for Rietveld robotics.

Further information
Ryo Tamura
National Institute for Materials Science
Email: tamura.ryo@nims.go.jp

About Science and Technology of Advanced Materials: Methods (STAM Methods)

STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming. https://www.tandfonline.com/STAM-M

Dr. Yasufumi Nakamichi
STAM Methods Publishing Director
Email: NAKAMICHI.Yasufumi@nims.go.jp

Press release distributed by Asia Research News for Science and Technology of Advanced Materials.


Copyright 2022 JCN Newswire. All rights reserved. www.jcnnewswire.com
JCN Newswireへ
SEOTOOLS News Letter

SEOに役立つ情報やニュース、SEOTOOLSの更新情報などを配信致します。


 powered by blaynmail
SEOTOOLSリファレンス
SEO対策
SEOの基礎知識
SEOを意識したサイト作り
サイトマップの作成
サイトの登録
カテゴリ(ディレクトリ)登録
カテゴリ登録(モバイル
検索エンジン登録
テキスト広告
検索連動型(リスティング)広告
プレスリリースを利用したSEO


TOPへ戻る